哲数物を学ぶ

自然科学のことや自分の経験や考えたことについて書いていきます.誰かの役に立てれば幸いです.

2次元球面 S^2 のKillingベクトル場の導出

半径が a の2次元球面 S2 の計量は ds2 = a2( dθ2 + sin2θ d$\phi$2 ) a:定数,0 ≤ θ ≤ π ,0 ≤ $\phi$ である. この空間のKillingベクトル場は \begin{align} K_1 &= \frac{\partial}{\partial \phi} \label{eq:K1} \\ K_2 &= \cos \phi \frac{\partial}{…

ミンコフスキー時空のペンローズ図を描く

時空の大域的な構造を図示するために,無限に広がる曲がった時空を共形的に変形して平面の有限領域に写して考える方法がある.それをペンローズ図(または共形図)とよぶ. ここではミンコフスキー時空のペンローズ図を描こう.因果関係を見るために時間座標…

フラクトゥーア(ドイツ文字)の発音・手書きの Anki 単語帳

フラクトゥーア (ドイツ文字)の発音と手書きを覚えるためにAnki単語帳を作った. 公開ページ → Fraktur pronunciation&handwriting - AnkiWeb カードの構成 表面 LaTeXを使ってフラクトゥーアの各文字を表示する. 裏面 対応したRoman アルファベット 発音…

位相幾何学の記法まとめ

本ブログでの位相幾何学について述べられているページでの記法をまとめる. 主に参考 *1 にしたがっている. 単体ホモロジー K(0) は単体複体 K に含まれる0-単体(頂点)の集合. |K| は単体複体 K をRm 上の部分集合として見たもの.すなわち $|K| = {\displ…

球対称な時空の計量の微分形式を用いた導出

あるまとまった領域に質量 m と電荷 Q が存在し,その周りに球対称な部分空間が形成された時空の計量は \begin{equation} ds^2 = - \left(1- \frac{2m}{r} +\frac{Q^2}{r^2} - \frac{1}{3}\Lambda r^2 \right)dt^2 +\left(1- \frac{2m}{r} +\frac{Q^2}{r^2} …

MathJax で \pounds コマンドを定義する.

MathJaxではLaTeXにおける\poundsがデフォルトでは入力できないのでunicode入力を使ってマクロを定義してしまおう. \poundsコマンドを使いたいページのはじめに $\def\pounds{{\\it\\unicode{xA3}}}$ を入力すればよい. またはヘッダーにあるMathJaxのマク…

単体複体としての連結性と位相空間としての連結性が同値であることの証明

目次 記法 定義 位相空間が連結である. 位相空間が弧状連結である. 単体複体が連結である. 補題 命題 証明 K が複体として連結である. ⇒ |K| は位相空間として連結である. K が複体として連結である. ⇐ |K| は位相空間として連結である. 記法 K(0) は…

ポテンシャルの存在しない空間における1次元自由粒子のシュレディンガー方程式

ポテンシャルの存在しない ( V(x,t) = 0 ) 空間における1次元自由粒子について考える. 目次 シュレディンガー方程式の変数分離 定常解 確率密度と確率流密度 分散関係 シュレディンガー方程式の変数分離 V = 0 のときのシュレディンガー方程式は \begin{equ…

運動量演算子の固有関数の正規直交性と完全性

運動量演算子 $-i\hbar \frac{d}{dx}$ の性質を述べる. 目次 固有値方程式と固有関数 離散固有値 直交性 完全性 固有値方程式と固有関数 k を任意の定数として,微分方程式 \begin{equation} -i\hbar \frac{d \psi(x)}{dx} = \hbar k \psi (x) \end{equatio…

ポテンシャル V 中の粒子の確率密度に関する連続の式(微分形・積分形)の導出と確率密度・確率流密度の物理的意味

目次 問題 (a)の解答 (b)の解答 (c)の解答 問題 ポテンシャル V(r , t) 中の粒子の状態を記述するシュレーディンガー方程式を \[i\hbar \frac{\partial}{\partial t} \psi (\boldsymbol{r},t) = \left(-\frac{\hbar^2}{2m}\nabla^2+V(\boldsymbol{r},t) \rig…