次の教科書の11.2節より,SU(2)×U(1) 電弱理論における,電子ニュートリノ $\nu _ e$・電子 $e$ の弾性散乱を考える.
散乱振幅 $T(\nu _ e e \to \nu _ e e) $において,荷電カレント相互作用の寄与は以下で表される.
\begin{equation}
\frac{g^2}{8M_W^2}
[\bar{\nu}_e\gamma_\mu (1-\gamma_5)e][\bar{e}\gamma_\mu (1-\gamma_5)\nu_e]
\end{equation}
これがフィルツ変換により,
\begin{equation}
-\frac{g^2}{8M_W^2}
[\bar{\nu}_e\gamma_\mu (1-\gamma_5)\nu_e][\bar{e}\gamma_\mu (1-\gamma_5)e]
\end{equation}
に式変形できることを示す.
フィルツ変換による式変形
これは,フィルツ変換によるスピノル添え字の組み換え
\begin{equation} \label{eq:354a}
[\gamma _ \mu (1-\gamma _ 5)] _ {\alpha\beta} [\gamma ^ \mu (1-\gamma _ 5)] _ {\delta \epsilon}
=- [\gamma _ \mu (1-\gamma _ 5)] _ {\alpha \epsilon} [\gamma ^ \mu (1-\gamma _ 5)] _ {\delta\beta }
\end{equation}
により成り立つことが分かる.
\eqref{eq:354a}の導出
フィルツ変換そのものの導出手順の把握も兼ねて,2通りの方法で導こう.
直接フィルツ変換をする場合
Fierz変換の導出手順を直接適用する.
$ [\gamma _ \mu (1-\gamma _ 5)] _ {\alpha\beta} [\gamma ^ \mu (1-\gamma _ 5)] _ {\delta \epsilon} =: (\Gamma _ {\alpha\epsilon}) _ {\delta\beta} $を,添え字$ \delta,\beta $の$ 4\times 4 $行列16個が$ \alpha\epsilon $でラベル付けられているとして見る.
$ \{\Gamma _ i\} _ i =\{I,\gamma ^ \mu,\sigma ^ {\mu\nu},\gamma ^ \mu\gamma _ 5,\gamma _ 5\} ,(i=S,V,T,A,P)$は$ 4\times 4 $行列の完全系を成すので,
\begin{align}
(\Gamma _ {\alpha\epsilon}) _ {\delta\beta} &= \hat{g} _ S (I) _ {\delta\beta} + (\hat{g} _ V) _ \mu (\gamma ^ \mu) _ {\delta\beta} + (\hat{g} _ T) _ {\mu\nu} (\sigma ^ {\mu\nu}) _ {\delta\beta} + (\hat{g} _ A) _ \mu(\gamma ^ \mu\gamma _ 5) _ {\delta\beta} + \hat{g} _ P (\gamma _ 5) _ {\delta\beta}
\label{eq:345firez}
\\
\hat{g} _ i &= \frac{1}{\mathrm{tr} (\Gamma _ i \Gamma _ i)} \mathrm{tr} (\Gamma _ {\alpha\epsilon} \Gamma _ i)
= \frac{1}{\mathrm{tr} (\Gamma _ i \Gamma _ i)} (\Gamma _ {\alpha\epsilon}) _ {\delta\beta} (\Gamma _ i) _ {\beta\delta}
\end{align}
と展開できる.分母の$ \mathrm{tr} (\Gamma _ i \Gamma _ i) $は$ i $について和を取ってないことに注意.
\begin{align}
\mathrm{tr} (\Gamma _ 0 \Gamma _ 0) &= 4
\\
\mathrm{tr} (\Gamma _ i \Gamma _ i) &=-4 \quad (i=1,2,3)
\\
\frac{\gamma ^ \mu}{\mathrm{tr}(\gamma ^ \mu \gamma ^ \mu) } &= (\frac{\gamma ^ 0}{\mathrm{tr}(\gamma ^ 0 \gamma ^ 0) }, \frac{\gamma ^ i}{\mathrm{tr}(\gamma ^ i \gamma ^ i) })
= \frac{1}{4}(\gamma ^ 0,-\gamma ^ i) =\frac{\gamma _ \mu}{4}
\\
\sigma ^ {\mu\nu} &:= \frac{i}{2}[\gamma ^ \mu,\gamma ^ \nu]= \frac{i}{2} (2\gamma ^ \mu\gamma ^ \nu - \{\gamma ^ \mu,\gamma ^ \nu\}) =i(\gamma ^ \mu\gamma ^ \nu - g ^ {\mu\nu})
\\
\gamma _ \nu\gamma ^ \mu\gamma ^ \nu &= \gamma _ \nu(2g ^ {\mu\nu}-\gamma ^ \nu\gamma ^ \mu) =-2 \gamma ^ \mu
\end{align}
を後に使う.
\begin{align}
\hat{g} _ S &= \frac{1}{\mathrm{tr} (II)} (\Gamma _ {\alpha\epsilon}) _ {\delta\beta} (I) _ {\beta\delta}
= \frac{1}{4} [\gamma _ \mu (1-\gamma _ 5)] _ {\alpha\beta} [\gamma ^ \mu (1-\gamma _ 5)] _ {\delta \epsilon} (I) _ {\beta\delta}
= \frac{1}{4} [\gamma _ \mu (1-\gamma _ 5)\gamma ^ \mu (1-\gamma _ 5)] _ {\alpha \epsilon}
\\
&= \frac{1}{4} [\gamma _ \mu\gamma ^ \mu - \gamma _ \mu\gamma ^ \mu\gamma _ 5 -\gamma _ \mu\gamma _ 5\gamma ^ \mu + \gamma _ \mu\gamma _ 5\gamma ^ \mu \gamma _ 5] _ {\alpha \epsilon}
=0
\\
(\hat{g} _ V) _ \mu &= \frac{1}{\mathrm{tr} (\gamma ^ \mu\gamma ^ \mu)} (\Gamma _ {\alpha\epsilon}) _ {\delta\beta} (\gamma ^ \mu) _ {\beta\delta}
= \frac{1}{\mathrm{tr} (\gamma ^ \mu\gamma ^ \mu)} [\gamma _ \nu (1-\gamma _ 5)\gamma ^ \mu\gamma ^ \nu (1-\gamma _ 5)] _ {\alpha \epsilon}
\\
&= \frac{1}{\mathrm{tr} (\gamma ^ \mu\gamma ^ \mu)} [\gamma _ \nu\gamma ^ \mu\gamma ^ \nu - \gamma _ \nu\gamma ^ \mu\gamma ^ \nu\gamma _ 5 -\underbrace{\gamma _ \nu\gamma _ 5\gamma ^ \mu\gamma ^ \nu} _ {=\gamma _ \nu\gamma ^ \mu\gamma ^ \nu\gamma _ 5} + \underbrace{\gamma _ \nu\gamma _ 5\gamma ^ \mu\gamma ^ \nu \gamma _ 5} _ {=\gamma _ \nu\gamma ^ \mu\gamma ^ \nu}] _ {\alpha \epsilon}
\\
&= \frac{2}{\mathrm{tr} (\gamma ^ \mu\gamma ^ \mu)} [\gamma _ \nu\gamma ^ \mu\gamma ^ \nu - \gamma _ \nu\gamma ^ \mu\gamma ^ \nu\gamma _ 5 ] _ {\alpha \epsilon}
= \frac{-4}{\mathrm{tr} (\gamma ^ \mu\gamma ^ \mu)} [\gamma ^ \mu (1- \gamma _ 5) ] _ {\alpha \epsilon}
\\
&= - [\gamma _ \mu (1- \gamma _ 5) ] _ {\alpha \epsilon}
\\
(\hat{g} _ T) _ {\mu\nu} &= \frac{1}{\mathrm{tr} (\sigma ^ {\mu\nu}\sigma ^ {\mu\nu})}(\Gamma _ {\alpha\epsilon}) _ {\delta\beta} (\sigma ^ {\mu\nu}) _ {\beta\delta}
= \frac{i}{\mathrm{tr} (\sigma ^ {\mu\nu}\sigma ^ {\mu\nu})} [\gamma _ \lambda (1-\gamma _ 5)(\gamma ^ \mu\gamma ^ \nu - g ^ {\mu\nu})\gamma ^ \lambda (1-\gamma _ 5)] _ {\alpha \epsilon}
\\
&= \frac{i}{\mathrm{tr} (\sigma ^ {\mu\nu}\sigma ^ {\mu\nu})} [\gamma _ \lambda (1-\gamma _ 5)\gamma ^ \mu\gamma ^ \nu\gamma ^ \lambda (1-\gamma _ 5) - g ^ {\mu\nu}\underbrace{\gamma _ \lambda (1-\gamma _ 5)\gamma ^ \lambda (1-\gamma _ 5)} _ {=0}] _ {\alpha \epsilon}
\\
&= \frac{i}{\mathrm{tr} (\sigma ^ {\mu\nu}\sigma ^ {\mu\nu})} [\gamma _ \lambda\gamma ^ \mu\gamma ^ \nu\gamma ^ \lambda - \gamma _ \lambda\gamma ^ \mu\gamma ^ \nu\gamma ^ \lambda\gamma _ 5 -\gamma _ \lambda\gamma _ 5\gamma ^ \mu\gamma ^ \nu\gamma ^ \lambda + \gamma _ \lambda\gamma _ 5\gamma ^ \mu\gamma ^ \nu\gamma ^ \lambda \gamma _ 5] _ {\alpha \epsilon}
\\
&=0
\\
(\hat{g} _ A) _ \mu &= \frac{1}{\mathrm{tr} (\gamma ^ \mu\gamma _ 5\gamma ^ \mu\gamma _ 5)} (\Gamma _ {\alpha\epsilon}) _ {\delta\beta} (\gamma ^ \mu\gamma _ 5) _ {\beta\delta}
= -\frac{1}{\mathrm{tr} (\gamma ^ \mu\gamma ^ \mu)} [\gamma _ \nu (1-\gamma _ 5)\gamma ^ \mu\underbrace{\gamma _ 5\gamma ^ \nu (1-\gamma _ 5)} _ {=\gamma ^ \nu (1-\gamma _ 5)}] _ {\alpha \epsilon}
\\
&= [\gamma _ \mu (1- \gamma _ 5) ] _ {\alpha \epsilon}
\\
\hat{g} _ P &= \frac{1}{\mathrm{tr} (\gamma _ 5\gamma _ 5)} (\Gamma _ {\alpha\epsilon}) _ {\delta\beta} (\gamma _ 5) _ {\beta\delta}
= \frac{1}{\mathrm{tr} (\gamma _ 5\gamma _ 5)} [\gamma _ \mu (1-\gamma _ 5)\underbrace{\gamma _ 5\gamma ^ \mu (1-\gamma _ 5)} _ {=\gamma ^ \mu (1-\gamma _ 5)}] _ {\alpha \epsilon} =0
\end{align}
よって,式\eqref{eq:345firez}は,
\begin{align}
[\gamma _ \mu (1-\gamma _ 5)] _ {\alpha\beta} [\gamma ^ \mu (1-\gamma _ 5)] _ {\delta \epsilon}
&= (\hat{g} _ V) _ \mu (\gamma ^ \mu) _ {\delta\beta} + (\hat{g} _ A) _ \mu(\gamma ^ \mu\gamma _ 5) _ {\delta\beta}
\\
&= -[\gamma ^ \mu (1- \gamma _ 5) ] _ {\alpha \epsilon}
[ \gamma ^ \mu (1- \gamma _ 5)] _ {\delta\beta}
\end{align}
となる. //
付録Aのフィルツ変換公式を適用する場合
付録(A.19)に特別な場合についてのフィルツ変換公式があるので,それを適用する.
\begin{equation}
(\eqref{eq:354a}の左辺)=
( \gamma _ \mu ) _ {\alpha\beta}( \gamma ^ \mu ) _ {\delta \epsilon}-( \gamma _ \mu ) _ {\alpha\beta}(\gamma ^ \mu \gamma _ 5 ) _ {\delta \epsilon}- ( \gamma _ \mu\gamma _ 5 ) _ {\alpha\beta}( \gamma ^ \mu ) _ {\delta \epsilon} +( \gamma _ \mu\gamma _ 5 ) _ {\alpha\beta}( \gamma ^ \mu \gamma _ 5) _ {\delta \epsilon}
\end{equation}
上の式において,
\begin{align}
(\gamma _ \mu) _ {\alpha\beta} (\gamma ^ \mu) _ {\delta \epsilon} &+ (\gamma _ \mu\gamma _ 5) _ {\alpha\beta} (\gamma ^ \mu \gamma _ 5) _ {\delta \epsilon}
= - (\gamma _ \mu) _ {\alpha\epsilon} (\gamma ^ \mu) _ {\delta \beta} - (\gamma _ \mu\gamma _ 5) _ {\alpha\epsilon} (\gamma ^ \mu \gamma _ 5) _ {\delta \beta}
\label{eq:cheng354gg}
\\
( \gamma _ \mu ) _ {\alpha\beta}(\gamma ^ \mu \gamma _ 5 ) _ {\delta \epsilon}
&=
( \gamma _ \mu ) _ {\alpha\beta}(\gamma ^ \mu) _ {\delta\sigma}( \gamma _ 5 ) _ {\sigma \epsilon}
\\
&=[(I) _ {\alpha\sigma}(I) _ {\delta\beta}-\frac{1}{2}(\gamma _ \mu) _ {\alpha\sigma}(\gamma ^ \mu) _ {\delta\beta} - \frac{1}{2}(\gamma _ \mu\gamma _ 5) _ {\alpha\sigma}(\gamma ^ \mu\gamma _ 5) _ {\delta\beta} - (\gamma _ 5) _ {\alpha\sigma}(\gamma _ 5) _ {\delta\beta}]( \gamma _ 5 ) _ {\sigma \epsilon}
\label{eq:cheng354g5}
\\
& = (\gamma _ 5 ) _ {\alpha\epsilon}(I) _ {\delta\beta}-\frac{1}{2}(\gamma _ \mu\gamma _ 5 ) _ {\alpha\epsilon}(\gamma ^ \mu) _ {\delta\beta} - \frac{1}{2}(\gamma _ \mu) _ {\alpha\epsilon}(\gamma ^ \mu\gamma _ 5) _ {\delta\beta} - (I) _ {\alpha\epsilon}(\gamma _ 5) _ {\delta\beta}
\\
( \gamma _ \mu\gamma _ 5 ) _ {\alpha\beta}( \gamma ^ \mu ) _ {\delta \epsilon} &=
( \gamma _ \mu ) _ {\alpha\sigma}( \gamma _ 5 ) _ {\sigma \beta} (\gamma ^ \mu) _ {\delta\epsilon}
= ( \gamma _ \mu ) _ {\alpha\sigma} (\gamma ^ \mu) _ {\delta\epsilon}( \gamma _ 5 ) _ {\sigma \beta}
\\
&=[(I) _ {\alpha\epsilon}(I) _ {\delta\sigma}-\frac{1}{2}(\gamma _ \mu) _ {\alpha\epsilon}(\gamma ^ \mu) _ {\delta\sigma} - \frac{1}{2}(\gamma _ \mu\gamma _ 5) _ {\alpha\epsilon}(\gamma ^ \mu\gamma _ 5) _ {\delta\sigma} - (\gamma _ 5) _ {\alpha\epsilon}(\gamma _ 5) _ {\delta\sigma}]( \gamma _ 5 ) _ {\sigma \beta}
\\
& = (I ) _ {\alpha\epsilon}(\gamma _ 5) _ {\delta\beta}-\frac{1}{2}(\gamma _ \mu ) _ {\alpha\epsilon}(\gamma ^ \mu\gamma _ 5) _ {\delta\beta} - \frac{1}{2}(\gamma _ \mu\gamma _ 5) _ {\alpha\epsilon}(\gamma ^ \mu) _ {\delta\beta} - (\gamma _ 5) _ {\alpha\epsilon}(I) _ {\delta\beta}
\\
( \gamma _ \mu ) _ {\alpha\beta}(\gamma ^ \mu \gamma _ 5 ) _ {\delta \epsilon} &+
( \gamma _ \mu\gamma _ 5 ) _ {\alpha\beta}( \gamma ^ \mu ) _ {\delta \epsilon}
= - (\gamma _ \mu) _ {\alpha\epsilon}(\gamma ^ \mu\gamma _ 5) _ {\delta\beta}
-(\gamma _ \mu\gamma _ 5 ) _ {\alpha\epsilon}(\gamma ^ \mu) _ {\delta\beta}
\end{align}
である.式\eqref{eq:cheng354gg}は,フィルツ変換(A.19)より,
\begin{equation}
\begin{pmatrix}
\hat{g} _ S\\
\hat{g} _ V\\
\hat{g} _ T\\
\hat{g} _ A\\
\hat{g} _ P
\end{pmatrix}
=\frac{1}{4}
\begin{pmatrix}1 & 4 & 12 & -4 & 1\\
1 & -2 & 0 & -2 & -1\\
\frac{1}{2} & 0 & -2 & 0 & \frac{1}{2}\\
-1 & -2 & 0 & -2 & 1\\
1 & -4 & 12 & 4 & 1\end{pmatrix}
\begin{pmatrix}
0\\
1\\
0\\
1\\
0
\end{pmatrix}
=
\begin{pmatrix}
0\\
-1\\
0\\
-1\\
0
\end{pmatrix}
\end{equation}
を用い,式\eqref{eq:cheng354g5}も
\begin{equation}
\begin{pmatrix}
\hat{g} _ S\\
\hat{g} _ V\\
\hat{g} _ T\\
\hat{g} _ A\\
\hat{g} _ P
\end{pmatrix}
=\frac{1}{4}
\begin{pmatrix}1 & 4 & 12 & -4 & 1\\
1 & -2 & 0 & -2 & -1\\
\frac{1}{2} & 0 & -2 & 0 & \frac{1}{2}\\
-1 & -2 & 0 & -2 & 1\\
1 & -4 & 12 & 4 & 1\end{pmatrix}
\begin{pmatrix}
0\\
1\\
0\\
0\\
0
\end{pmatrix}
=
\begin{pmatrix}
1\\
-\frac{1}{2}\\
0\\
-\frac{1}{2}\\
-1
\end{pmatrix}
\end{equation}
を用いた.