Cheng & Li 『Gauge theory of elementary particle physics』p365 から説明されている素粒子の散乱過程についての計算ノートをまとめる.
目次
散乱断面積の計算
$\nu _ \mu + e \to \nu _ \mu + e$ 散乱
低エネルギー領域における $ \nu _ \mu +e \to \nu _ \mu +e $ の散乱断面積を求める.
▶TikZコード
\begin{tikzpicture}
\draw[white,-{Stealth[black]}] (-1,.5) -- (-.5,.5) ;
\draw[white,-{Stealth[black]}] (-1,.5) -- (.5,.5) ;
\draw (-1,.5) node[left] {$ \nu_\mu (k) $} -- (1,.5) node[right] {$ \nu_\mu (k') $} ;
\draw[white,-{Stealth[black]}] (-1,-.5) -- (-.5,-.5) ;
\draw[white,-{Stealth[black]}] (-1,-.5) -- (.5,-.5) ;
\draw (-1,-.5) node[left] {$ e(p,\lambda) $} -- (1,-.5) node[right] {$ e(p',\lambda') $};
\draw[decorate,decoration=snake] (0,.5) -- node[right] {$ Z $} (0,-.5);
\end{tikzpicture}
\raise0.8cm\hbox{ $ \quad \approx \quad $}
\begin{tikzpicture}
\coordinate (k) at (-1,.5);
\coordinate (k') at (1,.5);
\coordinate (p) at (-1,-.5);
\coordinate (p') at (1,-.5);
\draw[white,-{Stealth[black]}] (k) -- ($ (k)!.25!(p') $) ;
\draw[white,-{Stealth[black]}] (k) -- ($ (k)!.75!(p') $) ;
\draw[white,-{Stealth[black]}] (p) -- ($ (p)!.25!(k') $) ;
\draw[white,-{Stealth[black]}] (p) -- ($ (p)!.75!(k') $) ;
\draw (k) node[left] {$ \nu_\mu (k) $} -- (p') node[right] {$ e(p',\lambda') $};
\draw (p) node[left] {$ e(p,\lambda) $} -- (k') node[right] {$ \nu_\mu (k') $};
\draw[->] (-.5,.5) .. controls (0,.3) .. node[above] {$ J^0 $} (.5,.5);
\draw[->] (-.5,-.5) .. controls (0,-.3) .. node[below] {$ J^0 $} (.5,-.5);
\end{tikzpicture}
散乱振幅 $ T _ \nu(\lambda,\lambda') $ は上の右図のファインマン則から,
\begin{align}
T _ {\nu} (\lambda,\lambda') &=
\frac{g ^ 2}{4{M _ Z} ^ 2 \cos\theta _ W} g ^ \nu _ L [\bar{u}(k') \gamma _ \mu (1-\gamma _ 5)u(k)]
\{\bar{u}(p',\lambda') [g ^ e _ L\gamma _ \mu (1-\gamma _ 5)+ g ^ e _ R\gamma _ \mu (1+\gamma _ 5)]u(p,\lambda)\}
\end{align}
である.絶対値の2乗は
\begin{align}
&|T _ {\nu} (\lambda,\lambda') | ^ 2=T _ {\nu} (\lambda,\lambda') T _ {\nu} (\lambda,\lambda') ^ *
\\
&= 2 {G _ F} ^ 2 {g ^ \nu _ L} ^ 2 [\bar{u}(k') \gamma _ \mu (1-\gamma _ 5)u(k)][\bar{u}(k') \gamma _ \nu (1-\gamma _ 5)u(k)] ^ \dagger
\\
&\quad \times \{\bar{u}(p',\lambda') [g ^ e _ L\gamma _ \mu (1-\gamma _ 5)+ g ^ e _ R\gamma _ \mu (1+\gamma _ 5)]u(p,\lambda)\} \{\bar{u}(p',\lambda') [g ^ e _ L\gamma _ \nu (1-\gamma _ 5)+ g ^ e _ R\gamma _ \nu (1+\gamma _ 5)]u(p,\lambda)\} ^ \dagger
\\
&= 2 {G _ F} ^ 2 {g ^ \nu _ L} ^ 2 [\bar{u}(k') \gamma _ \mu (1-\gamma _ 5)u(k)][\bar{u}(k) \gamma _ \nu (1-\gamma _ 5)u(k')]
\\
&\quad \times \{\bar{u}(p',\lambda') [g ^ e _ L\gamma _ \mu (1-\gamma _ 5)+ g ^ e _ R\gamma _ \mu (1+\gamma _ 5)]u(p,\lambda)\} \{\bar{u}(p,\lambda) [g ^ e _ L\gamma _ \nu (1-\gamma _ 5)+ g ^ e _ R\gamma _ \nu (1+\gamma _ 5)]u(p',\lambda')\}
\end{align}
スピン $ \lambda,\lambda' $ について,入射電子は無偏極とするので平均を取り,散乱電子のスピンは和をとる.
ディラックスピノル $ u(k,\lambda) $ についての公式 $\sum _ {\lambda} u(k,\lambda)\bar{u}(k,\lambda) = \not k +m $ を用いて,
\begin{align}
\frac{1}{2} \sum _ {\lambda,\lambda'} |T _ \nu (\lambda,\lambda') | ^ 2
&= (G _ F g ^ \nu _ L) ^ 2 L ^ - _ {\mu\nu}(k,k') [{g ^ e _ L} ^ 2 L ^ {-\mu\nu}(p,p') + {g ^ e _ R} ^ 2 L ^ {+\mu\nu} (p,p')]
\\
L ^ {\pm} _ {\mu\nu} (k,k') &\equiv \operatorname{tr} [ \not k' \gamma _ \mu (1\pm\gamma _ 5) \not k \gamma _ \nu (1\pm \gamma _ 5)]
\\
&= 8(k' _ \mu k _ \nu + k' _ \nu k _ \mu - k \cdot k' g _ {\mu\nu} \mp i\varepsilon _ {\alpha\mu\beta\nu} k ^ {\prime \alpha}k ^ \beta )
\\
&= 8(k _ \nu k' _ \mu + k _ \mu k' _ \nu - k' \cdot k g _ {\mu\nu} \pm i\varepsilon _ {\beta\mu\alpha\nu} k ^ \beta k ^ {\prime \alpha} )
\\
&= L ^ {\mp} _ {\mu\nu}(k',k)
\end{align}
となる.レプトンの質量は無視する.そして,4元運動量保存 $ k+p = k' + p' $(または $ k-p' = k' - p $) より両辺を2乗すると
\begin{equation}
(k\cdot p) = (k'\cdot p') \quad, \quad (k'\cdot p) = (k \cdot p')
\end{equation}
である.よって
\begin{align}
L ^ - _ {\mu\nu} (k,k') L ^ {\mp\mu\nu} (p,p') &=
64(k' _ \mu k _ \nu + k' _ \nu k _ \mu - k \cdot k' g _ {\mu\nu} + i\varepsilon _ {\alpha\mu\beta\nu} k ^ {\prime \alpha}k ^ \beta )
\\
&\qquad\quad \times (p ^ {\prime\mu} p ^ \nu + p ^ {\prime\nu} p ^ \mu - p \cdot p' g ^ {\mu\nu} \pm i\varepsilon ^ {\gamma\mu\lambda\nu} p' _ \gamma p _ \lambda )
\\
&= 64 \Big\{ (k' _ \mu k _ \nu + k' _ \nu k _ \mu - k \cdot k' g _ {\mu\nu})(p ^ {\prime\mu} p ^ \nu + p ^ {\prime\nu} p ^ \mu - p \cdot p' g ^ {\mu\nu})
\\
&\qquad\quad \pm i\underbrace{(k' _ \mu k _ \nu + k' _ \nu k _ \mu - k \cdot k' g _ {\mu\nu}) \varepsilon ^ {\gamma\mu\lambda\nu}} _ {=0} p' _ \gamma p _ \lambda
\\
&\qquad\quad + ik ^ {\prime \alpha}k ^ \beta \underbrace{\varepsilon _ {\alpha\mu\beta\nu}
(p ^ {\prime\mu} p ^ \nu + p ^ {\prime\nu} p ^ \mu - p \cdot p' g ^ {\mu\nu} )} _ {=0}
\\
&\qquad\quad \mp\underbrace{ \varepsilon _ {\alpha\mu\beta\nu} \varepsilon ^ {\gamma\mu\lambda\nu}} _ {\rlap{=-2(\delta _ \alpha ^ \gamma \delta _ \beta ^ \lambda - \delta _ \alpha ^ \lambda \delta _ \beta ^ \gamma)}} k ^ {\prime \alpha}k ^ \beta p' _ \gamma p _ \lambda \Big\}
\\
&=64 \Big\{ (k'\cdot p')(k\cdot p) + (k'\cdot p)(k\cdot p') - \cancel{(k'\cdot k)(p\cdot p')}
\\
&\qquad\quad +(k' \cdot p)(k\cdot p') +(k'\cdot p')(k \cdot p) - \cancel{(k'\cdot k)(p\cdot p')}
\\
&\qquad\quad - \cancel{(k\cdot k')(p'\cdot p)} - \cancel{(k\cdot k')(p'\cdot p)} +\cancel{4 (k\cdot k')(p \cdot p') }
\\
&\qquad\quad \pm 2[ (k'\cdot p')(k\cdot p) - (k'\cdot p)(k \cdot p')]\Big\}
\\
&= 128 \{ (k\cdot p) ^ 2 + (k'\cdot p) ^ 2 \pm [ (k\cdot p) ^ 2 - (k'\cdot p) ^ 2 ] \}
\\
&=
\begin{cases}
16 ^ 2 (k\cdot p) ^ 2 \\
16 ^ 2 (k'\cdot p) ^ 2
\end{cases}
\\
L ^ + _ {\mu\nu} (k,k') L ^ {+\mu\nu} (p,p') &= 16 ^ 2 (k\cdot p) ^ 2
\\
\frac{1}{2} \sum _ {\lambda,\lambda'} |T _ \nu (\lambda,\lambda') | ^ 2 &=
(16G _ Fg ^ \nu _ L) ^ 2[{g ^ e _ L} ^ 2(k\cdot p) ^ 2 + {g ^ e _ R} ^ 2(k'\cdot p) ^ 2]
\end{align}
である.
微分断面積は以下で与えられる.
\begin{align}
&d\sigma = \frac{1}{2E _ \nu} \frac{1}{2m _ e} \frac{1}{|\boldsymbol{v}|} (2\pi) ^ 4
\delta ^ 4(k+p-k'-p') \left (\frac{1}{2} \sum |T _ \nu| ^ 2 \right )
\frac{d ^ 3 k'}{(2\pi) ^ 3 2k' _ 0} \frac{d ^ 3 p'}{(2\pi) ^ 3 2p' _ 0}
\\
&|\boldsymbol{v}| は入射粒子の相対速度.\nonumber
\end{align}
これはローレンツ不変である.ここでは実験室系で全断面積 $ \sigma(\nu _ \mu e) $ を計算する.
▶TikZコード
\begin{tikzpicture}
\draw[white,-{Stealth[black]}] (-2,0) -- (-1,0) node[below,black] {$ k $};
\draw (-2,0) node[left] {$ \nu_\mu $} -- (-.2,0);
\draw[white,-{Stealth[black]}] (.2,.2) -- ($ (2,1)!0.5!(0.2,0.2) $) node[below,black] {$ k' $};
\draw (.2,.2) -- (2,1) node[right] {$ \nu_\mu $};
\draw[white,-{Stealth[black]}] (.2,-.2) -- ($ (2,-1)!0.5!(0.2,-.2) $) node[below,black] {$ p' $};
\draw (.2,-.2) -- (2,-1) node[right] {$ e $};
\draw (0,0) circle (.1) node[above] {$ e $} node[below] {$ p $};
\draw[dashed] (.2,0) -- (2,0);
\draw (.5,0) arc [start angle = 0, end angle=-33,radius=.5] node[right] {$ \theta $};
\end{tikzpicture}
\begin{align}
&k=(E _ \nu,\boldsymbol{k}) ~,~ p=(m _ e,0) ~,~ k'=(E' _ \nu,\boldsymbol{k}')
~,~ p' = (E _ e,\boldsymbol{p}')
\\
&E _ e \gg m _ e ~,~ E _ \nu = |\boldsymbol{k}| ~,~ E' _ \nu = |\boldsymbol{k}'| ~,~ E _ e = |\boldsymbol{p}'|
\\
& |\boldsymbol{v}| = |\boldsymbol{k}|/ E _ \nu=1
\\
& 0\le E _ e \le E _ \nu ~,~ 0 \le \theta \le \pi
\end{align}
まずは位相空間を先に計算する.
\begin{equation}
\int (2\pi) ^ 4
\delta ^ 4(k+p-k'-p') \frac{d ^ 3 k'}{(2\pi) ^ 3 2E' _ \nu} \frac{d ^ 3 p'}{(2\pi) ^ 3 2E _ e}
\end{equation}
実験室系では,
\begin{equation}
= \frac{1}{16\pi ^ 2} \int
\delta(E _ \nu-E' _ \nu-E _ e) \delta ^ 3(\boldsymbol{k}-\boldsymbol{k}'-\boldsymbol{p}') \frac{d ^ 3 k'}{E' _ \nu} \frac{d ^ 3 p'}{E _ e}
\end{equation}
まず $ k' $ の積分を実行する. そして $ p' $ について極座標にする.
\begin{align}
d ^ 3p'&=|\boldsymbol{p}'| ^ 2d|\boldsymbol{p}'| d(\cos\theta)2\pi ={E _ e} ^ 2dE _ e d(\cos\theta)2\pi
\\
&-1 \le \cos \theta \le 1
\end{align}
なので,
\begin{equation}
= \frac{1}{8\pi} \int _ 0 ^ {E _ \nu} \int _ {-1} ^ 1
\delta(E _ \nu-E' _ \nu-E _ e) \frac{E _ e}{E' _ \nu} dE _ e d(\cos\theta)
\end{equation}
ここで
\begin{align}
&E' _ \nu =|\boldsymbol{k}'|=|\boldsymbol{k}-\boldsymbol{p}'|
= \sqrt{{E _ \nu} ^ 2 + {E _ e} ^ 2 -2E _ \nu E _ e \cos\theta }
\\
&\frac{\partial E' _ \nu}{\partial(\cos\theta)} =
-\frac{E _ \nu E _ e}{E' _ \nu}
\\
&E _ \nu-E' _ \nu-E _ e=0 \Leftrightarrow \cos\theta =1
\end{align}
より
\begin{align}
&=\frac{1}{8\pi} \int _ 0 ^ {E _ \nu} \int _ {-1} ^ 1
\left | \frac{\partial E' _ \nu}{\partial(\cos\theta)} \right | ^ {-1} \delta(\cos\theta -1) \frac{E _ e}{E' _ \nu} dE _ 2 d(\cos\theta)
\\
&= \frac{1}{8\pi}\int _ 0 ^ {E _ \nu} \int _ {-1} ^ 1
\delta(\cos\theta -1) \frac{1}{E _ \nu} dE _ e d(\cos\theta)
\\
&= \frac{1}{8\pi} \int _ 0 ^ {E _ \nu}
\frac{dE _ e }{E _ \nu}
\end{align}
となる.
よって全断面積は
\begin{align}
\sigma(\nu _ \mu e) &= \int d\sigma = \int _ 0 ^ {E _ \nu} \frac{1}{32{E _ \nu} ^ 2 m _ e} \left (\frac{1}{2} \sum |T _ \nu| ^ 2 \right ) dE _ e
\\
&= \int _ 0 ^ {E _ \nu} \frac{1}{32{E _ \nu} ^ 2 m _ e} (16G _ Fg ^ \nu _ L) ^ 2[{g ^ e _ L} ^ 2(E _ \nu m _ e) ^ 2 + {g ^ e _ R} ^ 2(E' _ \nu m _ e) ^ 2] dE _ e
\\
&= \frac{8{G _ F} ^ 2 m _ e}{\pi} {g ^ \nu _ L} ^ 2 \int _ 0 ^ {E _ \nu} [{g ^ e _ L} ^ 2 + {g ^ e _ R} ^ 2(E' _ \nu/E _ e ) ^ 2] dE _ e
\\
&E _ \nu-E' _ \nu-E _ e=0 より \nonumber
\\
&= \frac{8{G _ F} ^ 2 m _ e}{\pi} {g ^ \nu _ L} ^ 2 \int _ 0 ^ {E _ \nu} [{g ^ e _ L} ^ 2 + {g ^ e _ R} ^ 2(E _ \nu/E _ e -1) ^ 2] dE _ e
\\
&スケール変数 y=E _ \nu/E _ e を用いて \nonumber
\\
&= \frac{8{G _ F} ^ 2 m _ e}{\pi} {g ^ \nu _ L} ^ 2 E _ \nu \int _ 0 ^ {1} [{g ^ e _ L} ^ 2 + {g ^ e _ R} ^ 2(y -1) ^ 2] dy
\\
&= \frac{8{G _ F} ^ 2 m _ e}{\pi} {g ^ \nu _ L} ^ 2 E _ \nu [{g ^ e _ L} ^ 2 + \frac{1}{3}{g ^ e _ R} ^ 2] \label{eq:CLnue}
\end{align}
となる.
$\bar{\nu} _ \mu + e \to \bar{\nu} _ \mu + e$ 散乱
以下の反ニュートリノの過程 $ \bar{\nu} _ \mu e \to \bar{\nu} _ \mu e $ についても同様の手順で低エネルギーの領域で求める.
▶TikZコード
\begin{tikzpicture}
\draw[white,-{Stealth[black]}] (-1,.5) -- (-.5,.5) ;
\draw[white,-{Stealth[black]}] (-1,.5) -- (.5,.5) ;
\draw (-1,.5) node[left] {$ \bar{\nu}_\mu (k) $} -- (1,.5) node[right] {$ \bar{\nu}_\mu (k') $} ;
\draw[white,-{Stealth[black]}] (-1,-.5) -- (-.5,-.5) ;
\draw[white,-{Stealth[black]}] (-1,-.5) -- (.5,-.5) ;
\draw (-1,-.5) node[left] {$ e(p,\lambda) $} -- (1,-.5) node[right] {$ e(p',\lambda') $};
\draw[decorate,decoration=snake] (0,.5) -- node[right] {$ Z $} (0,-.5);
\end{tikzpicture}
\begin{align}
T _ {\bar{\nu}} (\lambda,\lambda') &=
\frac{g ^ 2}{4{M _ Z} ^ 2 \cos\theta _ W} g ^ \nu _ L [\bar{v}(k) \gamma _ \mu (1-\gamma _ 5)v(k')]
\{\bar{u}(p',\lambda') [g ^ e _ L\gamma _ \mu (1-\gamma _ 5)+ g ^ e _ R\gamma _ \mu (1+\gamma _ 5)]u(p,\lambda)\}
\\
\frac{1}{2} \sum |T _ {\bar{\nu}}| ^ 2 &=
{G _ F} ^ 2 {g ^ \nu _ L} ^ 2 \underbrace{L ^ - _ {\mu\nu}(k',k)} _ {=L ^ + _ {\mu\nu}(k,k')} [{g ^ e _ L} ^ 2 L ^ {-\mu\nu}(p,p') + {g ^ e _ R} ^ 2 L ^ {+\mu\nu} (p,p')]
\\
&= (16G _ F g ^ \nu _ L) ^ 2 [{g ^ e _ L} ^ 2 (k'\cdot p) ^ 2 + {g ^ e _ R} ^ 2 (k\cdot p) ^ 2]
\\
\sigma(\bar{\nu} _ \mu e) &= \frac{8{G _ F} ^ 2 m _ e}{\pi} {g ^ \nu _ L} ^ 2 E _ \nu [\frac{1}{3}{g ^ e _ L} ^ 2 + {g ^ e _ R} ^ 2]
\end{align}
$\nu _ e + e \to \nu _ e + e$ 散乱
以下の $ \nu _ e +e \to \nu _ e + e $ の過程は荷電カレントと中性カレントのどちらも寄与する.
▶TikZコード
\begin{tikzpicture}
\draw[white,-{Stealth[black]}] (-1,.5) -- (-.5,.5) ;
\draw[white,-{Stealth[black]}] (-1,.5) -- (.5,.5) ;
\draw (-1,.5) node[left] {$ \nu_e (k) $} -- (1,.5) node[right] {$ e(p',\lambda') $} ;
\draw[white,-{Stealth[black]}] (-1,-.5) -- (-.5,-.5) ;
\draw[white,-{Stealth[black]}] (-1,-.5) -- (.5,-.5) ;
\draw (-1,-.5) node[left] {$ e(p,\lambda) $} -- (1,-.5) node[right] {$ \nu_e (k') $};
\draw[decorate,decoration=snake] (0,.5) -- node[right] {$ W $} (0,-.5);
\end{tikzpicture}
~
\begin{tikzpicture}
\draw[white,-{Stealth[black]}] (-1,.5) -- (-.5,.5) ;
\draw[white,-{Stealth[black]}] (-1,.5) -- (.5,.5) ;
\draw (-1,.5) node[left] {$ \nu_e (k) $} -- (1,.5) node[right] {$ \nu_e (k') $} ;
\draw[white,-{Stealth[black]}] (-1,-.5) -- (-.5,-.5) ;
\draw[white,-{Stealth[black]}] (-1,-.5) -- (.5,-.5) ;
\draw (-1,-.5) node[left] {$ e(p,\lambda) $} -- (1,-.5) node[right] {$ e(p',\lambda) $};
\draw[decorate,decoration=snake] (0,.5) -- node[right] {$ Z $} (0,-.5);
\end{tikzpicture}
荷電カレントと中性カレントは散乱するフェルミオンが入れ替わっているので,散乱振幅には相対的に逆符号で寄与する.
\begin{align}
T(\nu _ e e) &=
-\frac{g ^ 2}{2{M _ W} ^ 2} [\frac{1}{2}\bar{u}(k')\gamma _ \mu (1-\gamma _ 5)u(p,\lambda)] [\frac{1}{2} \bar{u}(p',\lambda' )\gamma _ \mu (1-\gamma _ 5)u(k)]
\\
&\quad +\frac{g ^ 2}{2{M _ W} ^ 2} \cdot 2 [\frac{1}{2} g ^ \nu _ L \bar{u}(k' )\gamma _ \mu (1-\gamma _ 5)u(k)]
\Bigl\{\frac{1}{2} \bar{u}(p',\lambda')[ g ^ e _ L\gamma _ \mu (1-\gamma _ 5) + g ^ e _ R\gamma _ \mu (1+\gamma _ 5) ] u(p,\lambda) \Bigr\}
\\
&第1項はフィルツ変換でu(p,\lambda)とu(k)を入れ替えると負符号がでるので.\nonumber
\\
&= \frac{g ^ 2}{8{M _ W} ^ 2} [\bar{u}(k' )\gamma _ \mu (1-\gamma _ 5)u(k)]
\\
&\quad \times \Bigr\{ [\bar{u}(p',\lambda')\gamma _ \mu (1-\gamma _ 5)u(p,\lambda)]
+2 g ^ \nu _ L \bar{u}(p',\lambda')[ g ^ e _ L\gamma _ \mu (1-\gamma _ 5) + g ^ e _ R\gamma _ \mu (1+\gamma _ 5) ] u(p,\lambda) \Bigl\}
\\
&= \frac{G _ F}{\sqrt{2}} [\bar{u}(k' )\gamma _ \mu (1-\gamma _ 5)u(k)]
\Bigr\{ \bar{u}(p',\lambda')[ (1 + 2g ^ \nu _ L g ^ e _ L)\gamma _ \mu (1-\gamma _ 5) + 2g ^ \nu _ L g ^ e _ R\gamma _ \mu (1+\gamma _ 5) ] u(p,\lambda) \Bigl\}
\\
&1= 2g ^ \nu _ L なので, \nonumber
\\
&= \sqrt{2}G _ F g ^ \nu _ L[\bar{u}(k' )\gamma _ \mu (1-\gamma _ 5)u(k)]
\Bigr\{ \bar{u}(p',\lambda')[ (1 + g ^ e _ L)\gamma _ \mu (1-\gamma _ 5) + g ^ e _ R\gamma _ \mu (1+\gamma _ 5) ] u(p,\lambda) \Bigl\}
\end{align}
よって,
\begin{equation}
\sigma(\nu _ e e) = \frac{8{G _ F} ^ 2 m _ e}{\pi} {g ^ \nu _ L} ^ 2 E _ \nu [(1+g ^ e _ L) ^ 2 + \frac{1}{3}{g ^ e _ R} ^ 2]
\end{equation}
となる.
$\bar{\nu} _ e + e \to \bar{\nu} _ e + e$ 散乱
$ \bar{\nu} _ e +e \to \bar{\nu} _ e + e $ の過程も同様に計算できる.
▶TikZコード
\begin{tikzpicture}
\draw[white,-{Stealth[black]}] (-2,.5) -- (-1.5,.25) ;
\draw[white,-{Stealth[black]}] (-2,-.5) -- (-1.5,-.25) ;
\draw (-2,.5) node[left] {$ \bar{\nu}_e (k) $} -- (-1,0)-- (-2,-.5) node[left] {$ e(p,\lambda) $} ;
\draw[white,-{Stealth[black]}] (0,0) -- (.5,.25) ;
\draw[white,-{Stealth[black]}] (0,0) -- (.5,-.25) ;
\draw (1,.5) node[right] {$ \bar{\nu}_e (k') $} -- (0,0)-- (1,-.5) node[right] {$ e(p',\lambda') $} ;
\draw[decorate,decoration=snake] (-1,0) -- node[above] {$ W $} (0,0);
\end{tikzpicture}
~
\begin{tikzpicture}
\draw[white,-{Stealth[black]}] (-1,.5) -- (-.5,.5) ;
\draw[white,-{Stealth[black]}] (-1,.5) -- (.5,.5) ;
\draw (-1,.5) node[left] {$ \bar{\nu}_e (k) $} -- (1,.5) node[right] {$ \bar{\nu}_e (k') $} ;
\draw[white,-{Stealth[black]}] (-1,-.5) -- (-.5,-.5) ;
\draw[white,-{Stealth[black]}] (-1,-.5) -- (.5,-.5) ;
\draw (-1,-.5) node[left] {$ e(p,\lambda) $} -- (1,-.5) node[right] {$ e(p',\lambda) $} ;
\draw[decorate,decoration=snake] (0,.5) -- node[right] {$ Z $} (0,-.5);
\end{tikzpicture}
\begin{align}
T(\bar{\nu} _ e e) &=
-\frac{g ^ 2}{2{M _ W} ^ 2} [\frac{1}{2} \bar{u}(p',\lambda')\gamma _ \mu (1-\gamma _ 5)v(k' )][\frac{1}{2} \bar{v} (k)\gamma _ \mu (1-\gamma _ 5) u(p,\lambda)]
\\
&\quad +\frac{g ^ 2}{2{M _ W} ^ 2} \cdot 2 [\frac{1}{2} g ^ \nu _ L \bar{v}(k )\gamma _ \mu (1-\gamma _ 5)v(k')]
\Bigl\{\frac{1}{2} \bar{u}(p',\lambda')[ g ^ e _ L\gamma _ \mu (1-\gamma _ 5) + g ^ e _ R\gamma _ \mu (1+\gamma _ 5) ] u(p,\lambda) \Bigr\}
\\
&この第1項もフィルツ変換によってv(k') とu(p,\lambda)を入れ替えられる.\nonumber
\\
&= \sqrt{2}G _ F g ^ \nu _ L[\bar{v}(k )\gamma _ \mu (1-\gamma _ 5)v(k')]
\Bigr\{ \bar{u}(p',\lambda')[ (1 + g ^ e _ L)\gamma _ \mu (1-\gamma _ 5) + g ^ e _ R\gamma _ \mu (1+\gamma _ 5) ] u(p,\lambda) \Bigl\}
\end{align}
よって
\begin{equation}
\sigma(\bar{\nu} _ e e) = \frac{8{G _ F} ^ 2 m _ e}{\pi} {g ^ \nu _ L} ^ 2 E _ \nu [\frac{1}{3}(1+g ^ e _ L) ^ 2 + {g ^ e _ R} ^ 2]
\end{equation}
となる.