三浦ノート

自分の経験したことを検索可能にしていくブログ.誰かの役に立ってくれれば嬉しいです.

2017-07-01から1ヶ月間の記事一覧

円上に束縛された粒子の運動量演算子の極座標表示

xy平面上の半径 $R$ の円上に束縛された粒子を考える. このとき粒子の持つ運動量 $p$ は方位角 成分のみを持ち,軌道角運動量の $z$ 成分 $L_z$ は である. よってこの系での運動量演算子 $p$ の極座標表示は となる. 以下に簡単な図を載せる. 軌道角運…

ガンマ行列と4元運動量の内積の2乗は静止質量の二乗になる

の証明 \begin{eqnarray} (\gamma\cdot p)^{2} &=& \gamma^{\mu} p_{\mu} \gamma^{\nu} p_{\nu} \\ &=& \gamma^{\mu} \gamma^{\nu} \frac{1}{2} (p_\mu p_\nu + p_\nu p_\mu) \\ &=& \frac{1}{2} \left\{\gamma^{\mu} \gamma^{\nu} p_\mu p_\nu + (2g^{\mu \…