三浦ノート

自分の経験したことを検索可能にしていくブログ.誰かの役に立ってくれれば嬉しいです.

2018-05-01から1ヶ月間の記事一覧

ネーターカレントから得られる保存電荷と場のポアソン括弧と交換関係

九後汰一郎 『ゲージ場の量子論 I』p15 から以下の計算をまとめる. 作用積分 $ S[\varphi(x)] $ が場 $ \varphi(x) $ の無限小変換 \begin{equation} \varphi(x)_i \to \varphi'_i(x) = \varphi_i(x) + \epsilon G_i(\varphi(x)) \end{equation} について不…

ポアンカレ群の計算ノート

私が Pierre Ramond ”Field Theory A Modern Primer” §1.3 の ”The Poincaré Group” を読んだときにやった計算を載せていく. 文字の定義 P:平行移動の生成子・運動量 L:軌道角運動量 M:ローレンツ変換の生成子 W:パウリ- ルバンスキーベクトル 目次 文…

エルミート多項式の母関数と漸化式の導出

エルミート多項式 Hn(ξ) (n ≥ 0) は,以下の式を満たす. \begin{align} \sum_{n=0}^{\infty} \frac{H_n(\xi)}{n!} t^n &= e^{-t^2 + 2\xi t} =: S(\xi,t) \label{eq:bo}\\ H'_n(\xi) &= 2nH_{n-1} (\xi) \label{eq:'}\\ H_{n+1}(\xi) &= 2\xi H_n(\xi) -2nH…

1次元調和振動子のシュレディンガー方程式をエルミート多項式で書き下す

量子力学演習シリーズ ある固定した中心に向かって,その中心からの粒子の変位に比例した力を粒子が受ける場合を考える.その時のポテンシャルは V(x) = mω2 x2 /2 で表され,このようなポテンシャルに従う系を調和振動子系という.(ω は角振動数) この系…

1次元有限井戸型ポテンシャル中の粒子の波動関数のパリティ

量子力学の演習問題シリーズ 次の1次元ポテンシャル中の粒子を考える. \begin{equation} V(x) = \begin{cases} -V_0 / 2a & |x| a \end{cases} \end{equation} ただし粒子のエネルギー固有値 E を, - V0 / 2a < E < 0 , V0 > 0 , a > 0 とする.ポテンシ…