三浦ノート

自分の経験したことを検索可能にしていくブログ.誰かの役に立ってくれれば嬉しいです.

量子力学

ポテンシャル V 中の粒子の確率密度に関する連続の式(微分形・積分形)の導出と確率密度・確率流密度の物理的意味

目次 問題 (a)の解答 (b)の解答 (c)の解答 問題 ポテンシャル V(r , t) 中の粒子の状態を記述するシュレーディンガー方程式を \[i\hbar \frac{\partial}{\partial t} \psi (\boldsymbol{r},t) = \left(-\frac{\hbar^2}{2m}\nabla^2+V(\boldsymbol{r},t) \rig…

水素原子の基底状態のエネルギーと半径の長さの古典的概算

問題 水素原子が半径 $r_0$ の球と考える.電子の位置の不確定さが $r_0$ 程度で,$r_0$ と運動量の不確かさ $p_0$ の積 $r_0 p_0$ が最小になる基底状態を考えると、不確定性原理より運動量の不確定さは $\hbar / r_0$ 程度ということになる.電子の持つエ…

1000ボルトで加速した電子の位置と運動量の測定不確定性

問題 1000ボルトで加速した電子の位置 x と運動量 p を,同時に測定することを考える.位置の精度を 10-10 m で測定できたならば,運動量成分は何パーセント程度の測定となるか. 解答 電子の持つエネルギーは eV [J] である.(e:電荷素量.V = 1000) ポ…

ガウス波束の運動量表示とその不確定性

問題 ガウス波束の不確定性(位置と運動量のゆらぎの積)の計算 - 哲数物を学ぶ 上の記事の問題の設定において,運動量の確率密度を求め,図示せよ.位置と運動量の確率密度の幅から,不確定性関係を考察せよ. 解答 運動量固有状態の位置表示波動関数 \begi…

ガウス波束の不確定性(位置と運動量のゆらぎの積)の計算

目次 問題 (a) の解答 (b) の解答 (c) の解答 問題 1次元の自由な空間で,つぎの波動関数(波束)が定義されているとする. \[\psi (x) = A \exp [- \frac{x^2}{2\sigma^2} + ikx ] \] (a) この波動関数における位置の確率密度を求め,全空間で積分した結果が …

ディラックのデルタ関数 $\delta (x)$ に普通の関数が入力されているときのふるまい

命題 ディラックのデルタ関数 $\delta(x)$ について以下の公式が成り立つ. 公式(a) \begin{equation} \displaystyle \delta \left((x-a)(x-b) \right)=\frac{1}{|a-b|} [\delta (x-a)+\delta(x-b)] ,a \neq b \end{equation} 公式(b) 方程式 f(x) = 0 に対…

ベイカー・キャンベル・ハウスドルフの公式の証明

量子力学でよく用いられるベイカー・キャンベル・ハウスドルフの公式(Baker–Campbell–Hausdorff formula)を示そう. 命題 演算子 $\hat{A},\hat{B}$ に対して次の2つが成り立つ. (a) 実数 $t$ に対して $\hat{B}(t) \equiv \exp(t\hat{A})\hat{B}\exp(-t\ha…

エルミート演算子の不確定性関係の証明

命題 補題 補題1・Schwarzの不等式 補題2・エルミート演算子の期待値は実数である. 補題3・反エルミート演算子の期待値は純虚数である. 命題の証明 例・位置と運動量の不確定性関係 $\require{cancel}$ 命題 エルミート演算子 $\hat{A}$,$\hat{B}$ とそ…

エルミート演算子の固有値は実数であることの証明

命題 (a) エルミート演算子の固有値は実数である. (b) 1つのエルミート演算子の異なる固有値に対応する固有状態は互いに直交する. (a)の証明 あるエルミート演算子 $\hat{A}$ に対して,その固有状態を $|a_i \rangle$ ,固有値を複素数 $a_i $ とする(添…

位置演算子と運動量演算子はエルミート演算子であることの証明

命題 ある関数 $\psi(x)$,$\phi(x)$ が実数 $x$ のすべての領域で定義されており,境界条件 \begin{equation} \lim_{x \to \pm \infty} \psi(x) = 0 \ , \ \ \ \lim_{x \to \pm \infty} \phi(x) = 0 \end{equation} をみたすものとする.このとき,位置演算…

状態ベクトルの三角不等式の証明

問題 二つの状態ベクトル $|A \rangle $,$|B \rangle$ の長さについての三角不等式 $$||A \rangle + |B \rangle | \leq ||A \rangle | + ||B \rangle |$$ を証明せよ. Schwarzの不等式 $$|\langle A|B \rangle| \leq ||A \rangle | \cdot ||B \rangle |$$ …

時間に依存しない,縮退がある時の摂動まとめ

時間に依存しない,縮退がある時の摂動論の問題設定と計算方法をまとめる. 問題 方法 結果(エネルギー固有値の1次の摂動について) 問題 問題は縮退がない場合と同じである.→ http://oviskoutar.hatenablog.com/entry/2017/09/27/124420 非摂動ハミルト…

時間に依存しない,縮退のない摂動まとめ

時間に依存しない,非縮退な摂動論の問題設定と計算方法をまとめる. 問題 方法 結果(1次と2次について) 問題 非摂動ハミルトニアン $\hat{H}_0$ と摂動ポテンシャル $\hat{V}$ と微小パラメータ $\lambda$ によって $$\hat{H}=\hat{H}_0+ \lambda \hat{V}…

位置または運動量演算子とそれら一方に関する関数との交換関係の公式

3次元位置演算子 ${\hat {\bf x}}$ と運動量演算子 ${\hat {\bf p}}$ とそれらに関する関数 $F({\hat {\bf x}})$,$G({\hat {\bf p}})$ について以下の交換関係が成り立つ. $$\begin{eqnarray} [\hat{x}_i ,G({\hat{{\bf p}}})] &=& &i\hbar \frac{\partia…

円上に束縛された粒子の運動量演算子の極座標表示

xy平面上の半径 $R$ の円上に束縛された粒子を考える. このとき粒子の持つ運動量 $p$ は方位角 成分のみを持ち,軌道角運動量の $z$ 成分 $L_z$ は である. よってこの系での運動量演算子 $p$ の極座標表示は となる. 以下に簡単な図を載せる. 軌道角運…